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Abstract

Rapid explosion in data accumulation has yielded larger and larger data mining problems. Many
practical problems have intrinsically unbalanced or rare class distributions. Standard classification
algorithms, which focus on overall classification accuracy, often perform poorly in these cases.
Recently, Tayal et al. (2013) proposed a kernel method called RankRC for large-scale unbalanced
learning. RankRC uses a ranking loss to overcome biases inherent in standard classification based
loss functions, while achieving computational efficiency by enforcing a rare class hypothesis rep-
resentation. In this paper we establish a theoretical bound for RankRC by establishing equivalence
between instantiating a hypothesis using a subset of training points and instantiating a hypothesis
using the full training set but with the feature mapping equal to the orthogonal projection of the
original mapping. This bound suggests that it is optimal to select points from the rare class first
when choosing the subset of data points for a hypothesis representation. In addition, we show that
for an arbitrary loss function, the Nyström kernel matrix approximation is equivalent to instantiat-
ing a hypothesis using a subset of data points. Consequently, a theoretical bound for the Nyström
kernel SVM can be established based on the perturbation analysis of the orthogonal projection in
the feature mapping. This generally leads to a tighter bound in comparison to perturbation anal-
ysis based on kernel matrix approximation. To further illustrate computational effectiveness of
RankRC, we apply a multi-level rare class kernel ranking method to the Heritage Health Provider
Network’s health prize competition problem and compare the performance of RankRC to other
existing methods.
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1. Introduction

Rapid data accumulation has yielded larger and larger data mining problems. Many practical

problems naturally arise as rare class problems. Applications of the rare class prediction include

fraud detection, customer churn, intrusion detection, fault detection, credit default, insurance risk,

and health management. The rare class prediction problem is also referred to as an unbalanced

or skewed class distribution problem (He and Garcia, 2009). In these problems samples from

one class are extremely rare (the minority class), while samples belonging to the other class(es)

are plenty (the majority class). Standard classification methods, which include support vector

machines (SVM) (Japkowicz and Stephen, 2002; Raskutti and Kowalczyk, 2004; Wu and Chang,

2003), decision trees (Batista et al., 2004; Chawla et al., 2004; Japkowicz and Stephen, 2002;

Weiss, 2004), neural networks (Japkowicz and Stephen, 2002), Bayesian networks (Ezawa et al.,

1996), and nearest neighbor methods (Batista et al., 2004; Zhang and Mani, 2003), perform poorly

when dealing with unbalanced data. This is because they attempt to minimize total classification

error. However, in rare class problems, minority examples constitute a small proportion of the data

and have little impact on the total error. Thus majority examples overshadow the minority class,

resulting in models that are heavily biased in recognizing the majority class. Also, errors from

different classes are assumed to have the same costs, which is usually not true in practice. In most

problems, correct classification of the rare class is more important.

Solutions to the class imbalance problem have been proposed at both the data and algorithm

levels. At the data level, various resampling techniques are used to balance class distribution,

including random under-sampling of majority class instances (Kubat and Matwin, 1997), over-

sampling minority class instances with new synthetic data generation (Chawla et al., 2002), and

focused resampling, in which samples are chosen based on additional criteria (Zhang and Mani,

2003). Although sampling approaches have achieved success in some applications, they are known

to have drawbacks. For instance under-sampling can eliminate useful information, while over-

sampling can result in overfitting. At the algorithm level, solutions are proposed by adjusting the

algorithm itself. This usually involves adjusting the costs of the classes to counter the class im-

balance (Turney, 2000; Lin et al., 2000; Chang and Lin, 2011) or adjusting the decision threshold

(Karakoulas and Shawe-Taylor, 1999). However, true error costs are often unknown and using an

inaccurate cost model can lead to additional bias.

A data mining method, either explicitly or implicitly, has three key components. Firstly, an
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empirical loss function is minimized. Secondly, model complexity is minimized, for example via

regularization. Thirdly, a mechanism balances the tradeoff between these two objectives. Choos-

ing an appropriate loss function is important and should take into account potential class imbal-

ances. In addition, scalability and computational efficiency become critical factors as data mining

problems continually grow in size.

In this paper, we focus on kernel based methods. We use an appropriate loss function for

rare class problems and exploit class imbalance to achieve an efficient space and time algorithm,

making it feasible for large-scale problems. Rare class problems can be viewed as consisting

of dual, conflicting objectives: (1) accuracy of the minority class or true positive rate and (2)

inaccuracy of the minority class or false positive rate. The Receiver Operator Characteristic (ROC)

curve graphically depicts these criteria in a two-dimensional domain, where each axis represents

one objective. The area under the ROC curve (AUC) summarizes the curve in a single numerical

measure and is often used as an evaluation metric for unbalanced problems (He and Garcia, 2009;

Bradley, 1997). We use the AUC to define an appropriate loss function for rare class problems.

Maximizing AUC is equivalent to minimizing a biclass ranking loss. A convex approximation

of the biclass ranking loss leads to a RankSVM (Herbrich et al., 2000) problem with two ordinal

levels. However, solving the dual optimization problem to obtain a kernel RankSVM solution,

requires O(m6) time and O(m4) space, where m is the number of data samples. Chapelle and

Keerthi (2010) propose a primal approach to solve RankSVM, which results in O(m3) time and

O(m2) space for nonlinear kernels. However, this is still computationally prohibitive for large data

mining problems.

Recently, Tayal et al. (2013) propose a rare class based kernel method for unbalanced problems

called RankRC. Like RankSVM, RankRC uses a ranking loss that maximizes AUC for two ordinal

levels and is suitable for unbalanced problems. In addition, RankRC uses a rare class hypothesis

representation to achieve significant computational advantage. RankRC can be solved in O(mm+)

time and O(mm+) space, where m+ is the number of rare class examples. Computational results in

Tayal et al. (2013) demonstrate that RankRC performs similar to kernel RankSVM for rare class

problems, while able to scale to much larger datasets.

The main objective of this paper is to theoretically establish the difference between RankRC, in

which the hypothesis is instantiated by rare class points, and RankSVM, in which a hypothesis is

instantiated by the full data set. We also extend RankRC to multi-level rare class ranking problems.
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Specifically, the contributions of this paper are as follows:

• We mathematically establish an upper bound on the difference between the optimal hypothe-

ses of RankSVM and RankRC. This bound is established by observing that a regularized loss

minimization problem with a hypothesis instantiated with points in a subset is equivalent to

a regularized loss minimization problem with a hypothesis instantiated by the full data set

but using the orthogonal projection of the original feature mapping.

• We show that the upper bound suggests that, under the assumption that a hypothesis is

instantiated by a subset of data points of a fixed cardinality, it is optimal to choose data

points from the rare class first.

• We further demonstrate that the Nyström kernel approximation method is equivalent to solv-

ing a kernel regularized loss problem instantiated by a subset of data points corresponding to

the selected columns. Consequently, a theoretical bound for Nyström kernel approximation

methods can be established based on the perturbation analysis of the orthogonal projection

in the feature mapping. We demonstrate that this can provide a tighter bound in compari-

son to perturbation analysis based on kernel matrix approximation, which can be arbitrarily

large depending on the condition number of the approximation matrix.

• We extend the biclass RankRC formulation to multi-level ranking and apply it to a recent

competition problem sponsored by the Heritage Health Provider Competition. The problem

illustrates how RankRC can be used for ordinal regression where one ordinal level contains

the vast majority of examples. We compare performance of RankRC with other methods

and demonstrate computational and predictive advantages.

The rest of the paper is organized as follows. Section 2 reviews the AUC measure, RankSVM,

RankRC, and its extension to multiple ordinal levels. Section 3 presents theoretical justification

for RankRC by comparing to RankSVM. Section 4 discusses connection with the Nyström ap-

proximation method. Section 5 describes the computational results from applying RankRC to the

HPN hospital admission prediction problem. Finally, Section 6 concludes with summary remarks

and potential extensions.
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2. AUC, Ranking Loss, and Rare Class Ranking

Evaluation metrics play an important role in learning algorithms. They provide ways to

assess performance as well as guide modeling. For classification problems, error rate is the

most commonly used assessment metric. Consider the two-class case first. Assume that D =

{(x1,y1), (x2,y2), ..., (xm,ym)} is a set of m training examples, where xi ∈ X ⊆ Rd , yi ∈ {+1,−1}.
Then the empirical error rate for an inductive hypothesis, f (x), typically obtained by training on

example set D, is defined as,

Error Rate =
1
m

m∑
i=1

I[ f (xi) 6= yi] , (1)

where I[p] denotes the indicator function and is equal to 1 if p is true, 0 if p is false. However,

for highly unbalanced datasets, this error rate is not appropriate since it can be biased toward the

majority class (Provost et al., 1997; Maloof, 2003; Sun et al., 2007; He and Garcia, 2009). For

example, if a given dataset includes 1 percent of positive class examples and 99 percent of negative

examples, a naive solution which assigns every example to be positive will obtain only 1 percent

error rate. Indeed, classifiers that always predict the majority class can obtain lower error rates

than those that predict both classes equally well. But clearly these are not useful hypotheses.

2.1. Maximizing AUC and Minimizing Ranking Loss

When the class distribution is unbalanced, classification performance is more accurately rep-

resented by a confusion matrix. For binary classification problems, a 2-by-2 confusion matrix

with rows corresponding to actual targets and columns corresponding to the predicted values can

be used (see Figure 1a). The off-diagonal entries, denoting false negatives and false positives,

together represent the total number of errors. A single performance measure that uses values from

both rows, e.g., the error rate in (1), will be sensitive to the class skew.

In this paper, we follow convention and set the minority class as positive and the majority class

as negative, with m+ denoting the number of minority examples and m− the number of majority

ones.

The Receiver Operating Characteristic (ROC) can be used to obtain a skew independent mea-

sure (Provost et al., 1997; Bradley, 1997; Metz, 1978). Most classifiers intrinsically output a nu-

merical score and a predicted label is obtained by thresholding this score. For example, a threshold

of zero leads to taking the sign of the numerical output as the label. Each threshold value generates
5
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Figure 1: ROC analysis. (a) Shows 2×2 confusion matrix representing the results of a model. TP, FP, FN, and TN,
denote True Positives, False Positives, False Negatives and True Negatives, respectively. (b) Different quantities of
TP, FP, FN and TN are obtained as the threshold value of a model is adjusted. (c) The ROC curve plots TP rate against
FP rate for different threshold values. The dashed (blue) ROC curve dominates the solid (black) ROC curve. The
dotted (gray) ROC curve has an AUC of 0.5, indicating a model with no discriminative value.

a confusion matrix with different quantities of false positives and negatives (see Figure 1b). The

ROC graph is obtained by plotting the true positive rate (number of true positives divided by m+)

against the false positive rate (number of false positives divided by m−) as the threshold level is

varied (see Figure 1c). It depicts the trade-off between benefits (true positives) and costs (false

positives) for different choices of the threshold. Thus it does not depend on a priori knowledge

or specification of the cost context or the class distribution. A ROC curve that dominates another

provides a better solution at any cost point.

To facilitate comparison, it is convenient to characterize ROC curves using a single measure.

The area under a ROC curve (AUC) can be used for this purpose. It is the average performance of

the model across all threshold levels and corresponds to the Wilcoxon rank statistic (Hanley and

Mcneil, 1982). AUC represents the probability that the score generated by a classifier places a

positive class sample above a negative class sample when the positive sample is randomly drawn

from the positive class and the negative sample is randomly drawn from the negative class (DeLong

et al., 1988). The AUC can be computed by forming the ROC curve and using the trapezoid rule

to calculate the area under the curve. Also, given the intrinsic output of a hypothesis, f (x), we can

directly compute the empirical AUC by counting pairwise correct rankings (DeLong et al., 1988):

AUC =
1

m+m−

∑
{i:yi=+1}

∑
{ j:y j=−1}

I
(

f (xi)≥ f (x j)
)
. (2)

Instead of maximizing accuracy (minimizing error rate) in the modeling problem, we maxi-
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mize AUC (minimize 1-AUC) as an alternative loss function, which is more appropriate for un-

balanced datasets. In practice, I[−p] is often replaced with a convex approximation such as the

hinge, logistic, or exponential cost functions (Bartlett et al., 2006). Specifically, using the hinge

function, `h(p) = max(0,1 − p), and controlling model complexity with `2-regularization, leads to

the following convex ranking problem,

min
w∈Rd

1
m+m−

∑
{i:yi=+1}

∑
{ j:y j=−1}

`h
(
wT xi − wT x j

)
+
λ

2
‖w‖2

2 , (3)

where λ ∈ R+ is a penalty parameter for model complexity. Here, the hypothesis, f (x) = wT x,

is assumed linear in the input space X . Problem (3) is a special case of RankSVM proposed by

Herbrich et al. (2000) with two ordinal levels. Like the standard SVM, RankSVM also leads to a

dual problem which can be expressed in terms of dot-products between input vectors. This allows

us to obtain a non-linear function through the kernel trick (Boser et al., 1992), which consists of

using a kernel, k : X ×X → R, that corresponds to a feature map, φ : X → F ⊆ Rd′ , such that

∀u,v ∈ X , k(u,v) = φ(u)Tφ(v). The kernel k directly computes the inner product of two vectors in

a potentially high-dimensional feature space F , without the need to explicitly form the mapping.

Consequently, we can replace all occurrences of the dot-product with k in the dual and work

implicitly in space F .

Since there is a Lagrange multiplier for each constraint associated with the hinge loss, the dual

formulation leads to a problem in m+m− = O(m2) variables. Assuming the optimization procedure

has cubic complexity in the number of variables and quadratic space requirements, the complexity

of the dual method becomes O(m6) time and O(m4) space, which is unreasonably large for even

medium sized datasets.

As noted by Chapelle (2007) and Chapelle and Keerthi (2010), we can also solve the primal

problem in the implicit feature space due to the Representer Theorem (Kimeldorf and Wahba,

1970; Schölkopf et al., 2001). This theorem states that the solution of any regularized loss mini-

mization problem in F can be expressed as a linear combination of kernel functions evaluated at

the training samples, k(xi, ·), i = 1, ...,m. Thus, the solution of (3) in F can be written as:

f (x) =
m∑

i=1

βik(xi,x) , or w =
m∑

i=1

βik(xi, ·) . (4)
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Substituting (4) in (3) we can express the primal problem in terms of β,

min
β∈Rm

1
m+m−

∑
{i:yi=+1}

∑
{ j:y j=−1}

`h
(
Ki·β − K j·β)+

λ

2
βT Kβ , (5)

where K ∈ Rm×m is a positive semi-definite kernel matrix, Ki j = k(xi,x j), and Ki· denotes the

ith row of K. To be able to solve (5) using unconstrained optimization methods, we require the

objective to be differentiable. We replace the hinge loss, `h, with an ε-smoothed differentiable

approximation, `ε, defined as,

`ε(z) =


(1 − ε) − z if z< 1 − 2ε
1
4ε (1 − z)2 if 1 − 2ε≤ z< 1
0 if z≥ 1 ,

which transitions from linear cost to zero cost using a quadratic segment of length 2ε. We note that

`ε provides similar benefits as the hinge loss (Rosset et al., 2003; Nguyen et al., 2009). Thus we

can solve (5) using standard unconstrained optimization techniques. Since there are m variables,

Newton’s method would, for example, take O(m3) operations per iteration.

RankSVM is popular in the information retrieval community, where linear models are the norm

(e.g. see Joachims, 2002). For a linear model, with d-dimension input vectors, the complexity of

RankSVM can be reduced to O(md + m logm) (Chapelle and Keerthi, 2010). However, many

rare class problems require a nonlinear function to achieve optimal results. Solving a nonlinear

RankSVM requires O(m3) time and O(m2) space (Chapelle and Keerthi, 2010), which is still not

practical for mid- to large-sized datasets. We believe this complexity is, in part, the reason why

nonlinear RankSVMs are not commonly used to solve rare class problems.

2.2. RankRC: ranking with a rare class representation

To make RankSVM computationally feasible for large scale unbalanced problems, Tayal et al.

(2013) propose to use a hypothesis instantiated by rare class points only. We present motivation for

RankRC by assuming specific properties of the class conditional distributions and kernel function.

Zhu et al. (2006) make use of similar assumptions, however, in their method they attempt to

directly estimate the likelihood ratio. In contrast, RankRC uses a regularized loss minimization

approach.

The optimal ranking function for a binary classification problem is the posterior probability,
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Figure 2: Example class conditional distributions for a rare class dataset showing that P(x|y = 1) is concentrated with
bounded support, while P(x|y = −1) is relatively constant in the local regions around the positive class.

P(y = 1|x), since it minimizes Bayes risk for arbitrary costs. From Bayes’ Theorem, we have,

P(y = 1|x) =
P(y = 1)P(x|y = 1)

P(y = 1)P(x|y = 1) + P(y = −1)P(x|y = −1)
. (6)

Also, any monotonic transformation of (6) yields equivalent ranking capability. Dividing both the

numerator and denominator of (6) by P(y = −1)P(x|y = −1), it can be observed that P(y = 1|x) is a

monotonic transformation of the likelihood ratio

f (x) =
P(x|y = 1)

P(x|y = −1)
. (7)

Using kernel density estimation, the conditional density P(x|y = 1) can be approximated using

P(x|y = 1) =
1

m+

∑
{i:yi=+1}

k (x,xi;σ) , (8)

where k(x,xi;σ) is a kernel density function, typically a smooth unimodal function of x with a

peak at xi and a width localization parameter σ > 0. This kernel density estimation encompasses

a large range of possible distributions from the m+ rare examples provided.

In rare class problems, most examples are from the majority class (y = −1) and only a small

number of samples are from the rare class (y = 1). It is reasonable to assume that the minority

class examples are concentrated in local regions with bounded support, while the majority class

acts as background noise. Therefore, in a neighborhood around the minority class examples, the

conditional density function P(x|y = −1) can be assumed to be relatively flat in comparison to

P(x|y = 1), see Figure 2 for instance. Assume P(x|y = −1)≈ ci for each minority example i in the

neighborhood of xi. Together with (8), the likelihood ratio (7) can be written in the form below,
9



f (x) =
∑
{i:yi=+1}

βik(xi,x;σ) , (9)

which uses only kernel function evaluations of the minority class. In contrast to (4), this formula-

tion takes specific advantage of the conditional density structure of rare class problems.

Replacing the kernel density function with a general kernel function and substituting (9) in (3)

results in the following RankRC problem,

min
β∈Rm+

1
m+m−

∑
{i:yi=+1}

∑
{ j:y j=−1}

`h
(
Ki+β − K j+β

)
+
λ

2
βT K++β , (10)

where Ki+ denotes ith row of K with column entries corresponding to the positive class, and K++ ∈
Rm+×m+ is the square submatrix of K corresponding to positive class entries. By replacing `h with

a smooth differentiable loss, `ε, problem (10) can be solved in O(mm+) time and O(mm+) space

(see Tayal et al., 2013, for detailed discussion). Based on several synthetic and real rare class

problems, it is shown in Tayal et al. (2013) that RankRC is computationally more efficient and can

scale to large datasets, while not sacrificing test performance compared to RankSVM.

3. Theoretical Comparison of RankRC with RankSVM

In this section we analytically compare the solution of RankRC with RankSVM. In particular,

we establish a bound for the difference between the solution of RankSVM and a solution in which

the hypothesis is restricted to an arbitrary subset of kernel functions. This bound shows that it

is optimal to first include kernel functions that correspond to points from the rare class when the

dataset is unbalanced. Hence, this bound provides additional theoretical justification for RankRC.

We first establish equivalence between instantiating a hypothesis using a subset of training

points and instantiating a hypothesis using the full training set but with the feature mapping equal

to the orthogonal projection of the original mapping. We show this is true for an arbitrary loss

function. Subsequently, we use this result to bound the difference between the RankSVM classifier

and a classifier that is restricted to a subset of kernel functions, by conducting a stability analysis

for the RankSVM optimization problem under a projected feature map perturbation.

For the purpose of analysis, we shall work explicitly in the high-dimensional feature space.

Let φ : X → F ⊆ Rd′ , denote a feature map corresponding to the kernel k : X ×X → R, such
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that ∀u,v ∈ X , k(u,v) = φ(u)Tφ(v). For an arbitrary loss function, L : Rm→R, and regularization

parameter, λ ∈ R+, consider the following regularized loss minimization problem in space F ,

min
w∈Rd′

L
(
wTφ(x1), ...,wTφ(xm)

)
+
λ

2
‖w‖2

2 . (11)

Here, the hypothesis, fφ(x) = wTφ(x), can be nonlinear in the input space, X , but is linear in the

high-dimensional feature space, F . We use the subscript φ in fφ to indicate the feature map used

in the hypothesis. Note, RankSVM is a special case of (11) using a ranking loss for L. From the

Representer Theorem, the solution of (11) is of the form

fφ(x) =
m∑

i=1

βik(xi,x) =
m∑

i=1

βiφ(xi)Tφ(x) , or w =
m∑

i=1

βiφ(xi) . (12)

This implies that the optimal hypothesis can always be represented using the full training set and

the solution vector w ∈ S = span{φ(xi) : i = 1, ...,m} is a linear combination of all the points in

feature space.

Now consider restricting the hypothesis to an arbitrary subset of kernel functions, indexed by

R⊆ {1, ...,m}:

f̄φ(x) =
∑
i∈R

βik(xi,x) =
∑
i∈R

βiφ(xi)Tφ(x) , or w =
∑
i∈R

βiφ(xi) , (13)

with f̄φ(x) = wTφ(x). We use the overline in f̄φ to indicate a restricted hypothesis. Subsequently,

we shall refer to (13) as the R-subset representation or classifier. In this case, the solution vector,

w ∈ SR = span{φ(xi) : i ∈ R}, is a linear combination of the subset of points in feature space

indexed by R. Since the set SR defines all feasible values of w, restricting the hypothesis to the

R-subset representation corresponds to solving the following constrained regularized loss mini-

mization problem in feature space:

min
w∈Rd′

L
(
wTφ(x1), ...,wTφ(xm)

)
+
λ

2
‖w‖2

2 ,

subject to w ∈ SR = span{φ(xi) : i ∈R} , R⊆ {1, ...,m} .
(14)

Note, RankRC is a special case of (14) using a ranking loss for L and settingR = {i : yi = 1}.
In Theorem 2 we will establish that problem (14) is equivalent to problem (11) under a pro-

jected feature map. That is, problem (14) is equivalent to the following unconstrained loss mini-

mization problem,

min
w∈Rd′

L
(
wTφR(x1), ...,wTφR(xm)

)
+
λ

2
‖w‖2

2 , (15)
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with hypothesis, fφR(x) = wTφR(x) and a feature map, φR : X → FR ⊆ Rd′ , defined as the or-

thogonal projection of φ onto SR, i.e.,

φR(x) = ProjSR (φ(x)) . (16)

The feature map, φR, maps the input space to a feature space, FR, which contains vectors of the

same dimensionality, d′, as the original feature space, F . Before establishing the equivalence of

(14) and (15), we first prove a technical lemma.

Lemma 1. Consider a feature map, φ :X →F ⊆Rd′ , and its projected map, φR :X →FR⊆Rd′ ,

defined by (16) for some index subset R⊆ {1, ...,m} and SR = span{φ(xi) : i ∈ R}. Assume that

w ∈ Rd′ is feasible for the constrained regularized loss minimization problem problem (14). Let

f̄φ(x) = wTφ(x) and fφR(x) = wTφR(x) be hypotheses associated with feature mapping φ and φR,

respectively. Then

f̄φ(x) = fφR(x), ∀x ∈ X . (17)

PROOF. Given any φ(x), there exists a unique orthogonal decomposition

φ(x) = φR(x) +φ⊥R(x) , (18)

where φR(x) ∈ SR ⊆ Rd′ is a component in SR and φ⊥R(x) ∈ Rd′ is a component orthogonal to

SR. By definition, φ(xi) ∈ SR,∀i ∈R. Hence

φ(xi)Tφ⊥R(x) = 0, ∀i ∈R, ∀x ∈ X . (19)

Since w is a feasible point for (14), we can write w =
∑

i∈Rβiφ(xi) for some β ∈R|R|. Then using

(19) we have

f̄φ(x) = wTφ(x)

=

(∑
i∈R

βiφ(xi)

)T (
φR(x) +φ⊥R(x)

)

=

(∑
i∈R

βiφ(xi)

)T

φR(x)

= wTφR(x)

= fφR(x).

This completes the proof. �
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Lemma 1 shows that, for any feasible w of (14), the hypothesis f̄φ(x) corresponding to the map

φ, is equivalent to the hypothesis fφR(x), corresponding to the projected map φR.

Theorem 2. Consider a feature map, φ : X →F ⊆ Rd′ , and its projected map, φR : X →FR ⊆
Rd′ , defined by (16) for some index subsetR⊆ {1, ...,m} and SR = span{φ(xi) : i ∈R}. Then the

constrained regularized loss minimization problem (14), using map φ, is equivalent to the uncon-

strained regularized loss minimization problem (15), using the projected map φR, i.e., w∗ solves

(14) if and only if w∗ solves (15). In addition, assuming w∗ solves either (14) or (15), then the

hypothesis f̄ ∗φ(x) = (w∗)Tφ(x), with map φ, is equivalent to the hypothesis f ∗φR(x) = (w∗)TφR(x),

with the projected map φR, i.e.,

f̄ ∗φ(x) = f ∗φR(x), ∀x ∈ X . (20)

PROOF. Using the Representor Theorem, there exists a solution w∗R to problem (15), which can

be expressed as

w∗R =
m∑

i=1

β∗i φR(xi). (21)

Hence, for any w ∈ Rd′ ,

L
(
(w∗R)TφR(x1), ..., (w∗R)TφR(xm)

)
+
λ

2
‖w∗R‖2

2 ≤ L
(
wTφR(x1), ...,wTφR(xm)

)
+
λ

2
‖w‖2

2 (22)

Since φR(x) ∈ SR, from (21), w∗R ∈ SR. Hence w∗R satisfies the constraint in (14). Following

Lemma 1,

(w∗R)TφR(x) = (w∗R)Tφ(x), ∀x ∈ X . (23)

Now consider any feasible point w for (14). Following Lemma 1, we have

wTφ(x) = wTφR(x), ∀x ∈ X . (24)

From (22) and (24),

L
(
(w∗R)TφR(x1), ..., (w∗R)TφR(xm)

)
+
λ

2
‖w∗R‖2

2 ≤ L
(
wTφ(x1), ...,wTφ(xm)

)
+
λ

2
‖w‖2

2 (25)

Hence w∗R is a solution to (14).

Conversely let us assume that w∗ is a solution to (14). Since w∗R is feasible for (14),
13



L
(
(w∗)Tφ(x1), ..., (w∗)Tφ(xm)

)
+
λ

2
‖w∗‖2

2 ≤ L
(
(w∗R)Tφ(x1), ..., (w∗R)Tφ(xm)

)
+
λ

2
‖w∗R‖2

2

= L
(
(w∗R)TφR(x1), ..., (w∗R)TφR(xm)

)
+
λ

2
‖w∗R‖2

2.

where the equality follows from (23).

From Lemma 1,

(w∗)Tφ(x) = (w∗)TφR(x), ∀x ∈ X .

Hence

L
(
(w∗)TφR(x1), ..., (w∗)TφR(xm)

)
+
λ

2
‖w∗‖2

2 ≤ L
(
(w∗R)TφR(x1), ..., (w∗R)TφR(xm)

)
+
λ

2
‖w∗R‖2

2.

Following (22) , for any w ∈ Rd′ ,

L
(
(w∗)TφR(x1), ..., (w∗)TφR(xm)

)
+λ‖w∗‖2

2 ≤ L
(
wT
RφR(x1), ...,wT

RφR(xm)
)

+
λ

2
‖w‖2

2

Hence the solution w∗ is also a solution to (15). The result (20) immediately follows from Lemma

1 and the equivalence of (14) and (15). The proof is complete. �

Now consider the ranking loss problem. Define

Rφ(w) =
1

m+m−

∑
{i:yi=+1}

∑
{ j:y j=−1}

`h
(
wTφ(xi) − wTφ(x j)

)
, (26)

where `h(z) = max(0,1 − z) is the hinge loss. Setting

L
(
wTφ(x1), ...,wTφ(xm)

)
= Rφ(w) (27)

in (11) gives:

min
w∈Rd′

Fφ(w) = Rφ(w) +
λ

2
‖w‖2

2 . (28)

Problem (28) corresponds to the RankSVM problem in feature spaceF , defined by the feature map

φ (or implicitly, by the kernel function, k). Similarly, setting (27) in problem (14) corresponds to

a RankSVM problem in which the hypothesis is restricted to aR-subset representation:

min
w∈Rd′

Fφ(w) = Rφ(w) +
λ

2
‖w‖2

2 ,

subject to w ∈ SR = span{φ(xi) : i ∈R} , R⊆ {1, ...,m} .
(29)

14



Setting L
(
wTφR(x1), ...,wTφR(xm)

)
= RφR(w) in problem (15), corresponds to the RankSVM

problem with feature map φR:

min
w∈Rd′

FφR(w) = RφR(w) +
λ

2
‖w‖2

2 . (30)

Let f ∗φ , f̄ ∗φ and f ∗φR denote the optimal hypotheses obtained by solving (28), (29) and (30), respec-

tively. From Theorem 2, f̄ ∗φ(x) = f ∗φR(x), and therefore | f ∗φ(x) − f̄ ∗φ(x)| = | f ∗φ(x) − f ∗φR(x)|. In other

words, we can bound the difference between a RankSVM classifier and aR-subset classifier, by a

stability analysis of the optimal RankSVM hypothesis under a perturbed (projected) feature map.

Stability analyses for a regular SVM have been conducted previously. In particular, Bousquet

and Elisseeff (2002) obtain a bound for a regular SVM under the effect of changing one training

point. Cortes et al. (2010) analyze stability of a regular SVM under the effect of changing the

kernel matrix. Our stability analysis here differs from existing analyses in two aspects. Firstly, we

obtain a bound under the effect of changing the feature mapping φ to φR. Secondly, we consider

here the RankSVM problem instead of a regular SVM.

Theorem 3. Consider a feature map, φ : X →F ⊆ Rd′ , and its projected map, φR : X →FR ⊆
Rd′ , defined by (16) for some index subset R⊆ {1, ...,m} and SR = span{φ(xi) : i ∈ R}. Assume

that f ∗φ(x) = (w∗)Tφ(x) is the optimal RankSVM hypothesis obtained by solving (28) with feature

map φ, and f ∗φR(x) = (w∗R)TφR(x) is the optimal RankSVM hypothesis obtained by solving (30)

with feature map φR. Assume there exists κ> 0 such that k(x,x)≤ κ, where k :X ×X →R is the

kernel map associated with φ. Then the following inequality holds,

| f ∗φR(x) − f ∗φ(x)| ≤ 2κ
λ

 ∑
{i:yi=+1}

I[i 6∈ R]
m+

+

∑
{ j:y j=−1}

I[ j 6∈ R]
m−


1
2

, ∀x ∈ X , (31)

where I[p] denotes the indicator function and is equal to 1 if p is true, 0 if p is false.

PROOF. Assume that w∗ and w∗R are minimizers of (28) and (30), respectively. Let ∆w = w∗R−w∗.

Recall that a convex function g satisfies

g(u + t(v − u)) − g(u)≤ t(g(v) − g(u))

for all u,v, t ∈ [0,1]. Since `h is convex, Rφ and RφR are convex. Then

Rφ(w∗ + t∆w) − Rφ(w∗)≤ t(Rφ(w∗R) − Rφ(w∗)) (32)

and RφR(w∗R − t∆w) − RφR(w∗R)≤ t(RφR(w∗) − RφR(w∗R)) , (33)

15



for all t ∈ [0,1].

Since w∗ and w∗R are minimizers of Fφ and FφR , for any t ∈ [0,1], we have

Fφ(w∗)≤ Fφ(w∗ + t∆w) (34)

and FφR(w∗R)≤ FφR(w∗R − t∆w) . (35)

Summing (34) and (35), using Fφ(w) = Rφ(w) +
λ
2‖w‖

2
2 and the identity(

‖w∗‖2
−‖w∗ + t∆w‖2

)
+

(
‖w∗R‖2

−‖w∗R − t∆w‖2
)

= 2t(1 − t)‖∆w‖2,

we obtain

λt(1 − t)‖∆w‖2 ≤
(
Rφ(w∗ + t∆w) − Rφ(w∗)

)
+
(
RφR(w∗R − t∆w) − RφR(w∗R)

)
(36)

Substituting (32) and (33) into (36), dividing by λt, and taking the limit t→ 0 gives

‖∆w‖2 ≤ 1
λ

(
Rφ(w∗R) − RφR(w∗R) + RφR(w∗) − Rφ(w∗)

)
=

1
λm+m−

∑
{i:yi=+1}

∑
{ j:y j=−1}

[
`h
(
(w∗R)Tφ(xi) − (w∗R)Tφ(x j)

)
− `h

(
(w∗R)TφR(xi) − (w∗R)TφR(x j)

)
+ `h

(
(w∗)TφR(xi) − (w∗)TφR(x j)

)
− `h

(
(w∗)Tφ(xi) − (w∗)Tφ(x j)

)]
,

where the last inequality uses the definitions of Rφ and RφR respectively. Since `h(·) is 1-Lipschitz,

we obtain

‖∆w‖2 ≤ 1
λm+m−

∑
{i:yi=+1}

∑
{ j:y j=−1}

(‖w∗‖+‖w∗R‖)
(
‖φ(xi) −φR(xi)‖+‖φ(x j) −φR(x j)‖

)

=
‖w∗‖+‖w∗R‖

λ

 ∑
{i:yi=+1}

‖φ(xi) −φR(xi)‖
m+

+

∑
{ j:y j=−1}

‖φ(x j) −φR(x j)‖
m−

 . (37)

From φ(x) = φR(x)+φ⊥R(x), with φR(x)∈SR and φ⊥R(x) is in the space orthogonal to SR, we have,

for i = 1, ...,m,

‖φ(xi) −φR(xi)‖ = ‖φ⊥R(xi)‖ ≤

{
‖φ(xi)‖ =

√
k(xi,xi)≤

√
κ, if i 6∈ R

0, if i ∈R .
(38)
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In addition, recall that RankSVM is equivalent to a 1-class SVM on an enlarged dataset with the

set of points P = {φ(xi) −φ(x j) : yi > y j, i, j = 1...,m}. Therefore w can be expressed in terms of

the dual variables 0≤ α∗i j ≤C of an SVM problem trained on P with C = 1
λm+m−

, as follows,

w∗ =
∑

{i, j:yi>y j}
α∗i j(φ(xi) −φ(x j)) =

∑
{i:yi=+1}

∑
{ j:y j=−1}

α∗i j(φ(xi) −φ(x j))

=
∑
{i:yi=+1}

φ(xi)

 ∑
{ j:y j=−1}

α∗i j

−

∑
{ j:y j=−1}

φ(x j)

 ∑
{i:yi=+1}

α∗i j

 .

Since ‖φ(x)‖ ≤
√
κ and C = 1

λm+m−
, we get ‖w∗‖ ≤

√
κCm−m+ +

√
κCm+m− = 2

√
κ

λ . Similarly,

‖φR(x)‖ ≤ ‖φ(x)‖ ≤
√
κ and ‖w∗R‖ ≤

2
√
κ

λ . Together with (38), we can then bound (37) by

‖∆w‖2 ≤ 4κ
λ2

 ∑
{i:yi=+1}

I[i 6∈ R]
m+

+

∑
{ j:y j=−1}

I[ j 6∈ R]
m−

 .

Therefore, we obtain

| fφR(x) − fφ(x)| = |wT
RφR(x) − wTφ(x)|

= |wT
R

(
φ(x) −φ⊥R(x)

)
− wTφ(x)|

= |∆wTφ(x) − wT
Rφ
⊥
R(x)|

= |∆wTφ(x)|

≤ ‖∆w‖‖φ(x)‖

≤ 2κ
λ

 ∑
{i:yi=+1}

I[i 6∈ R]
m+

+

∑
{ j:y j=−1}

I[ j 6∈ R]
m−


1
2

,

where we have used wT
Rφ
⊥
R(x) = 0 in the third equality since wR ∈ SR. This completes the proof.

�

The following result is a direct consequence of Theorem 2 and Theorem 3.

Corollary 4. For a feature map, φ :X →F ⊆Rd′ associated with kernel k :X ×X →R, let f ∗φ(x)

be the optimal RankSVM hypothesis obtained by solving (28), and f̄ ∗φ(x) be the optimal hypothesis

obtained by solving (29), in which the hypothesis is restricted to an arbitrary subset of kernel

17



functions indexed by R ⊆ {1, ...,m}. Assume there exists κ > 0 such that k(x,x) ≤ κ. Then the

following inequality holds,

| f̄ ∗φ(x) − f ∗φ(x)| ≤ 2κ
λ

 ∑
{i:yi=+1}

I[i 6∈ R]
m+

+

∑
{ j:y j=−1}

I[ j 6∈ R]
m−


1
2

, ∀x ∈ X . (39)

�

Therefore, for the ranking loss, the bound (39) decreases asymmetrically depending on whether

we include a point from the positive or negative class. In particular, if the dataset is unbalanced

with m− � m+, or 1
m+
� 1

m−
, then the reduction obtained from including a positive class kernel

function is much greater than including one from the negative class. Hence, for a fixed number of

kernel functions, the bound is minimized by first including kernel functions corresponding to the

positive or rare class.

4. Relation to Nyström Approximation

The Nyström method approximates a symmetric positive semi-definite matrix Q ∈ Rm×m by a

sample submatrix D of n�m columns from Q (e.g. see Baker, 1977; Williams and Seeger, 2001).

Without loss of generality, assume that the first n columns are the randomly chosen samples. Then

D and Q can be written as

D =
[

A
B

]
and Q =

[
A BT

B C

]
,

with A ∈ Rn×n, B ∈ R(m−n)×n, and C ∈ R(m−n)×(m−n). The Nyström method computes a rank-n

approximation of Q as

Q̂ = DA†DT =
[

A BT

B BA†BT

]
,

where A† is the Moore-Penrose pseudoinverse of A. Thus, the Nyström method approximates C

using BA†BT and can be seen as a method to complete matrix Q using information from only n

columns.

Approximating a kernel matrix with a low-rank structured matrix to improve computational

efficiency has been explored in the context of other kernel algorithms before. For instance, low-

rank approximations have been used to speed up kernel PCA (Achlioptas et al., 2001), multi-

dimensional scaling (Platt, 2005), spectral clustering (Fowlkes et al., 2004), manifold learning
18



(Talwalkar, 2010), Gaussian processes (Williams and Seeger, 2001), and support vector machines

(Smola and Schölkopf, 2000; Fine and Scheinberg, 2002; Zhang et al., 2012).

In this section, we show that solving a regularized loss minimization with the R-subset repre-

sentation, is equivalent to solving the full unrestricted problem using a low-rank Nyström approx-

imation of the kernel matrix. We show this is true for an arbitrary loss function.

Consider the regularized loss minimization problem (11) with a general loss function, L :Rm→
R. By substituting the solution (12) in (11), we can express the general regularized loss minimiza-

tion problem (11) in terms of the kernel matrix, K ∈ Rm×m, and model variables, β ∈ Rm,

min
β∈Rm

L (Kβ) +
λ

2
βT Kβ . (40)

Here, Kβ = [ fφ(x1), ..., fφ(xm)]T ∈ Rm, where fφ(x) =
∑m

i=1βik(xi,x).

Similarly, substituting the R-subset hypothesis (13) in (11), results in the following problem

with model variables, β ∈ R|R|,

min
β∈R|R|

L (K·Rβ) +
λ

2
βT KRRβ . (41)

Here K·R = [ki j]i=1...m, j∈R ∈ Rm×|R|, ki j = k(xi,x j), is a subset of columns from K, and KRR =

[ki j]i, j∈R ∈R|R|×|R| is the square submatrix of K indexed byR along columns and rows. We have

K·Rβ = [ f̄φ(x1), ..., f̄φ(xm)]T ∈ Rm, where the hypothesis, f̄φ(x) =
∑

i∈Rβik(xi,x), is restricted to

use a subset of kernel functions indexed byR⊆ {1, ...,m}.
In the following proposition, we show that problem (41) is equivalent to problem (40), where

the kernel matrix K is replaced by a Nyström approximation, K′ ∈ Rm×m.

Proposition 5. For any loss function L : Rm→ R and kernel matrix K ∈ Rm×m, the regularized

loss minimization problem (41), in which the hypothesis is restricted to a subset of kernel functions

indexed byR⊆ {1, ...,m}, is equivalent to the unrestricted problem (40) under a perturbed kernel

matrix corresponding to the Nyström approximation, K′ = K·RK†RR KT·R ∈ Rm×m, where K·R ∈
Rm×|R| are columns of K indexed byR, and KRR ∈ R|R|×|R| are rows of K·R indexed byR.

PROOF. Since KRR is positive semi-definite, using eigen-decomposition,

KRR = UΛUT ,

where U is an orthonormal matrix and Λ is a diagonal matrix of non-negative eigenvalues of KRR.
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Define w = Λ
1
2UTβ. Then β = UΛ†

1
2 w, and we can express (41) in terms of w as,

min
w∈R|R|

L
(

K·RUΛ†
1
2 w
)

+
λ

2
‖w‖2

2 . (42)

We recognize (42) as a problem in linear space with data points given by the rows of K·RUΛ∗
1
2 ∈

Rm×|R|.

Denote [φ′(x1), ...,φ′(xm)]T = K·RUΛ†
1
2 . Applying the Representer Theorem, the solution

fφ′(x) = wTφ′(x) can be expressed in the form,

fφ′(x) =

(
m∑

i=1

βiφ
′(xi)

)T

φ′(x), or w =
m∑

i=1

βiφ
′(xi) , (43)

Substituting (43) in problem (42) yields an equivalent problem,

min
β∈Rm

L
(
K′β

)
+
λ

2
βT K′β ,

where K′ =
(

K·RUΛ†
1
2

)(
K·RUΛ†

1
2

)T
= K·RK†RRKT·R ∈ Rm×m, which we recognize as the Nys-

tröm approximation of K using the columns indexed by R as samples. The proof is completed.

�

Proposition 5 formalizes the connection between selecting a set of points for the hypothesis

representation, and using a low-rank Nyström approximation kernel for any regularized loss min-

imization problem which can be written in form (40). Conversely, it also shows that using a low-

rank Nyström approximation kernel matrix can be viewed as selecting a R-subset representable

optimal hypothesis for problem (40). Thus, for problems which use a Nyström approximation ker-

nel, Proposition 5 provides an efficient optimization formulation in the form (41), or in the linear

space form (42), reducing problem dimension from m variables to |R| and space from O(m2) to

O(m|R|).
Theoretically, Theorem 2 and Proposition 5 together imply that using a Nyström kernel ap-

proximation is equivalent to projecting the feature map φ onto the subspace spanned by the subset

of samples in feature space. This relationship can potentially be used to analyze Nyström approxi-

mation algorithms based on a feature map projection, as in Theorem 2 & 3. For instance, Theorem

6 illustrates a stability bound that can be obtained for a regular SVM trained with a Nyström kernel

approximation.
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Theorem 6. Let f ∗K denote the optimal hypothesis obtained by solving the SVM problem with a

kernel matrix, K = [k(xi,x j)]m
i, j=1 ∈ Rm×m,

min
β∈Rm

1
m

m∑
i=1

`h(yiKi·β) +
λ

2
βT Kβ , (44)

where Ki·∈R1×m is the ith row of K. Define a perturbed kernel matrix, K′ ∈Rm×m, as the Nyström

approximation of K using the columns of K indexed byR⊆ {1, ...,m}. Let f ∗K′ denote the optimal

hypothesis obtained by solving the SVM problem (44) with the Nyström approximation K′. Then

the following inequality holds,

| f ∗K′(x) − f ∗K(x)| ≤
√

2κ
λ

√
1 −
|R|
m

, ∀x ∈ X .

PROOF. Following Proposition 5, using the Nyström approximation, K′, in the SVM problem

(44), is equivalent to

min
β∈RR

1
m

m∑
i=1

`h (yiKiRβ) +
λ

2
βT KRRβ , (45)

where KiR is the ith row of K·R. Problem (45) solves SVM with a hypothesis restricted to a subset

of kernel functions. Let φ denote the feature map corresponding to k. Then from Theorem 2,

the optimal hypothesis f ∗K′(x) equals the optimal SVM hypothesis under the projected mapping

φR = ProjSR (φ). Consequently, the difference between the optimal hypotheses, f ∗K and f ∗K′ , can be

bounded following the proof of Theorem 3; the only difference is that, instead of the ranking loss

function, Rφ, we have the SVM loss, 1
m
∑m

i=1 `h
(
yiwTφ(xi)

)
. This means that, instead of (37), we

have

‖∆w‖2 ≤
‖w∗‖+‖w∗R‖

λ

m∑
i=1

‖φ(xi) −φR(xi)‖
m

.

Similarly, it can be shown that ‖w∗‖ ≤
√
κ
λ , ‖w∗R‖ ≤

√
κ
λ and consequently

| f ∗K′(x) − f ∗K(x)| ≤
√

2κ
λ

(∑m
i=1 I[i 6∈ R]

m

) 1
2

, ∀x ∈ X .

�
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Cortes et al. (2010) obtain a stability bound for SVM assuming an arbitrary kernel matrix

perturbation. They use the bound to analyze Nyström kernel approximations. The bound obtained

in Cortes et al. (2010) is a function of the spectral norm of the difference between the two kernel

matrices, ie. ||K′ − K||2. In comparison, the bound obtained in Theorem 6, based on the feature

map projection for a Nyström approximation, is much simpler: it is proportional to the square root

of the percentage of the points not in the hypothesis representation. In addition, since the Nyström

approximation, K′, is computed using the pseudo inverse of kernel submatrix, KRR, it can become

arbitrarily far away from K, depending on the condition number of KRR. In contrast, the projected

map approach offers a more stable, and often tighter, bound.

To demonstrate this, we compare bounds for the ranking loss problem obtained using the fea-

ture map projection and kernel matrix perturbation approaches. Below we state the stability bound

for RankSVM under an arbitrary kernel perturbation following the approach in Cortes et al. (2010).

Theorem 7. Let f ∗K and f ∗K′ denote the optimal hypothesis obtained by RankSVM when using the

kernel matrix K ∈ Rm×m and K′ ∈ Rm×m, respectively. Then the following inequality holds for all

x ∈ X :

| f ∗K′(x) − f ∗K(x)| ≤ 2
√

2κ
3
4

λ
‖K′ − K‖

1
2
2

[
1 +

(
‖K′ − K‖2

4κ

) 1
4
]
. (46)

The proof is essentially the same as that in Cortes et al. (2010). The idea is to use an explicit

(m + 1)-dimension feature map φ and φ′ associated with K and K′ defined according to

φ(xi) = K
1
2
m+1ei and φ′(xi) = K

′ 12
m+1ei ,

where Km+1 and K′m+1 are augmented versions of K and K′ with the (m + 1)th point representing

an arbitrary test point, and ei ∈ Rm+1 is a unit vector, with the ith component equal to 1, and 0

everywhere else. Then using the fact the solution is at a minimizer and the objective is convex

(as done in Theorem 3), ‖∆w‖2 can be bounded in terms of ‖φ(xi) −φ′(xi)‖2 ≤ ‖K
1
2
m+1 − K

′ 12
m+1‖2 ≤

‖Km+1 −K′m+1‖
1
2
2 = ‖K −K′‖

1
2
2 , which can then be used to obtain the final result. The bound obtained

for RankSVM under a perturbed kernel matrix is simply twice that obtained in Cortes et al. (2010)

for a regular SVM. The factor of two emerges due to the double summation in the ranking loss

function.

From Proposition 5, we can bound the difference between the RankSVM classifier and a R-

subset RankSVM classifier by comparing the effect of perturbing the kernel matrix to its Nyström
22



approximation. Thus, bound (46) also applies to the difference between the RankSVM classifier

and aR-subset RankSVM classifier by setting K′ = K·RK†RR KT·R.
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(d) Mammograph

Figure 3: Comparison of the projected map bound (31) (Theorem 3) and the kernel perturbation bound (46) (Theorem
7) as |R| is increased. The projected map bound is computed assuming rare class points are used in the hypothesis
first. The kernel perturbation bound is obtained by randomly sampling a set of basis functions 40 times. The mean
value of the bound is plotted and standard deviation is shown as error bars. The blue ’*’ on the x-axis indicates the
number of rare (positive) examples in the dataset.

Figure 3 compares bound (46) with the projected map bound (31) obtained in Theorem 3 as
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Name Source Subject d m m+ ρ

Page0 Keel Computer 10 5472 559 10.2%

Satellite UCI Nature 36 6435 626 9.7%

Coil KDD Business 85 9822 586 6.0%

Mammograph (Woods et al., 1993) Life 6 11183 260 2.3%

Table 1: List of datasets and their characteristics used in Figure 3. d is the number of features, m is the total number
of observations, m+ is the number of rare class observations, and ρ = m+

m is the percentage of rare class examples.

|R| is increased on four unbalanced datasets described in Table 1. For the setup, we assume a

Gaussian kernel, with width σ2 = 1
m2

∑m
i, j=1 ||xi − x j||22. Since we are using a Gaussian kernel,

κ = 1. We set λ = 1, since it does not affect the comparison. For bound (31), we assume kernel

functions corresponding to rare class points are included in the representation first. This leads to a

deterministic trajectory as |R| is increased for each dataset. For bound (46), we randomly sample

|R| columns 40 times. For each sample we compute K′ to be used in (46). We show the mean and

standard deviation of the bound for each value of |R|. From Figure 3 it is clear that the projected

map based bound can be significantly lower than the kernel perturbation bound, particularly when

|R| � m.

Note, the kernel perturbation bound (46) does not depend on class label information. To min-

imize (46), we need to minimize ||K′ − K||2, where K′ is a Nyström approximation. We can ap-

proach this using any one of the various strategies available in the literature for landmark selection

in the Nyström method (e.g see Smola and Schölkopf, 2000; Zhang et al., 2008; Farahat et al.,

2011). However, better landmark selection is generally achieved at the expense of higher space

and time costs. As a result uniform random sampling without replacement remains the method

most commonly used in practice (Kumar et al., 2009).

In contrast, the projected map bound (31) uses class label information and captures the asym-

metry associated with an unbalanced RankSVM problem. The result leads to a simple selection

strategy: to include kernel functions corresponding to the rare class points first. This is compati-

ble with the motivation presented in Section 2.2 for RankRC. Computational results for RankRC,

presented in Tayal et al. (2013), confirm that the rare class representation performs better than an

equal number of randomly selected points for unbalanced ranking problems.

Finally, one could consider selection methods that combine both insights. For example, for big
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datasets, we can select |R|<m+ points from the positive class using a more sophisticated landmark

selection strategy than random sampling. In this case, the extra selection expense may be more

acceptable, since we are restricting ourselves to a smaller set of columns, m+� m. On the other

hand, if we are interested in selecting |R|>m+ kernel functions for the hypothesis representation,

we can first select the rare class points, and then randomly sample the remaining |R|− m+ points

from the majority class.

5. Predicting Days in Hospital: A Multi-Level Rare Class Ranking Example

In many prediction problems, labels correspond to a set of more than two ordered categories or

levels. This situation is referred to as ordinal regression (e.g. see Herbrich et al., 2000). If samples

from one of the levels are plenty, while samples from the other levels are rare, then the problem

can be considered a multi-level rare class problem. In this section, we extend the biclass RankRC

algorithm to handle multiple levels and apply it to a large-scale health informatics problem with a

skewed distribution.

The motivating application is based on a recent competition sponsored by the Heritage Health

Provider Network (HPN, Accessed: 2013-08-31).3 The objective is to predict the number of days,

yi ∈ {0,1, ...,14,15+}, member i will be hospitalized (inpatient or emergency room visit) in the

following year using historical claims data. The number of days a member spends in the hospital

is capped at 15 days to help protect the identiy of patients. The data provided consists of three

years of historical member claims information. Claims data is anonymized to protect the identity

of members (El Emam et al., 2012). The raw data contains basic member information, claims data,

drug counts, lab counts and outcome data in a set of relational tables. The training data consists of

147 473 patients over a two year period for which outcomes are given, with on average 12 claims

per patient per year (1 764 561 total claims). The third year of data is used for testing, for which

outcome information is not provided. We extracted 441 features from the relational data for each

patient.

Figure 4 shows the outcome distribution for the two years of training data. We see that the dis-

tribution is highly skewed. In particular, examples corresponding to yi = 0 constitute the majority

3The competition ran for over two years ending in April 2013 and was highly publicized due to the potential impact
on US healthcare and a US $3Mil prize. The authors participated in the competition placing 4th out of 1600+ teams.
Our final submission used additional dataset variants and results from other methods as well, which were combined
using a model stacking approach.
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Figure 4: Distribution of the days in hospital for the Heritage Health Network problem.

of cases (85%), while other outcomes, yi = 1, ...,15, are significantly fewer. As in most rare class

problems, we are more interested in identifying these rare outcomes.

To solve this problem, one may use traditional metric regression or multi-class classification

approaches. However, neither of these approaches correctly capture the structure encoded in the

labels. Traditional regression models assume the labels form an interval scale and errors of the

same interval are penalized equally. But in the hospitalization prediction problem, errors are not all

equal. For example, it is more important to distinguish between 0 and 1 days of hospitalization than

between 14 and 15 days. Moreover, it is unclear what transformation would be most appropriate

to represent the levels. Consequently, a regression approach may lead to a biased model with poor

generalization ability (refer to Herbrich et al., 2000, for further discussion). On the other hand,

these levels are also different from the labels of multiple classes in classification problems due to

the existence of ordering information.

Therefore, this setting is best handled using an ordinal regression or ranking loss function,

which attempts to rank the levels in the correct order, while not depending on the representation

of the ranks (Herbrich et al., 2000; Chapelle and Keerthi, 2010). The biclass RankSVM problem

(5) introduced in Section 2.1, can be generalized to multiple levels for this purpose, as follows:

min
β∈Rm

1∑
r<s mrms

R∑
r=1

∑
{i:yi=r}

∑
{ j:yi>y j}

`h
(

f (xi) − f (x j)
)

+
λ

2

m∑
i, j=1

βiβ jk(xi,x j) , (47)
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where the hypothesis

f (x) =
m∑

i=1

βik(xi,x) ,

uses kernel instances at all data points following the Representer Theorem. Compared to (5),

the loss function in (47), includes an additional summation over each rank level, r > 0, with a

maximum rank of R. We assume the rank index starts at 0. For each r value, the objective in

(47) reduces to a biclass ranking problem with r as the positive class label and all examples with

label less than r as the negative class. Thus Problem (47) can be seen as combining R separate

biclass ranking problems using the same hypothesis. The constant, mr, denotes the number of

observations which have output value r. For the hospitalization prediction problem, we set R = 15,

and r = 0, ...,15 represents the different ordinal levels (i.e. days in hospital).

We extend the notion of a rare-class representation to multiple levels as follows. In Figure 4 we

observe that r = 0 correspond to the majority class, while all other outcomes represent rare cases.

Therefore, we consider a representation which only uses kernel functions from examples corre-

sponding to r = 1, ...,15. If we decomposed the problem into R separate binary rare-class problems,

this set would constitute the union of all the rare class points used in each of the problems. Thus

we obtain the following multi-level RankRC problem:

min
β∈Rm

1∑
r<s mrms

R∑
r=1

∑
{i:yi=r}

∑
{ j:yi>y j}

`h
(

f̄ (xi) − f̄ (x j)
)

+
λ

2

∑
{i:yi 6=0}
{ j:y j 6=0}

βiβ jk(xi,x j) , (48)

where the hypothesis

f̄ (x) =
∑
{i:yi 6=0}

βik(xi,x) ,

is constrained to the set of rare class kernel functions. Problem (48) can be solved using similar

method as described in Tayal et al. (2013) for the biclass RankRC, by noting the gradient and

Hessian of the loss function is simply the sum of R biclass ranking loss functions. Thus, the

complexity is O
(∑

r<s mrms
)

in both space and time.

To evaluate models we count the number of pairs that are correctly ranked among all possible

pairs of data objects:

MAUC =
1∑

r<s mrms

R∑
r=1

∑
{i:yi=r}

∑
{ j:yi>y j}

I
(

f (xi)> f (x j)
)
.
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We call this measure MAUC to denote Multi-level AUC. An alternative measure is volume under

the ROC surface, which generalizes ROC analysis to ordinal regression. However, computing

volume under surface is prohibitive since it has exponential complexity in the number of ordinal

levels. MAUC is an approximation of the volume under surface, which can be computed efficiently

(Waegeman et al., 2006).

For our experiment, we compare the following methods: k-Neareast Neighbor (KNN) regres-

sion, Support Vector Regression (SVR) and three multi-level ranking methods, RANK-SVM (47),

RANK-RC (48), and RANK-RND. RANK-RND is similar to RANK-RC, but with the hypothesis re-

stricted to a randomly selected set of kernel functions, with the same cardinality used in RANK-RC.

We use LIBSVM (Chang and Lin, 2011) to solve the SVR problem. LIBSVM is a popular

and efficient implementation of the sequential minimal optimization algorithm (Platt, 1999). We

set cache size to 10GB to minimize cache misses; termination criteria and shrinking heuristics

are used in their default settings. The ranking methods (RANK-SVM, RANK-RC, RANK-RND) are

solved using the subspace-trust-region method as described in Coleman and Li (1994) and Branch

et al. (1999). Termination tolerance is set at 1e-6. For ranking methods, the memory available to

store the kernel matrix is limited to 10GB. Experiments are performed on a Xeon E5620@2.4Ghz

running Linux.

We train using 5%, 10%, 25%, 50%, and 75% of the training data. Half of the remaining

data is used for validation, the other half for test. Features are standardized to zero mean and

unit variance before training. Since our focus is on nonlinear kernels, for SVR and the ranking

methods, we use the Gaussian kernel, k(u,v) = exp(−‖u − v‖2
2/σ

2) with σ2 = 1
m2

∑m
i, j=1 ‖xi − x j‖2

2.

The penalty parameter λ (or 1
C for SVR) is determined by cross-validation over values log2λ =

[−20,−18, ...,8,10]. For KNN we cross-validate over k = [1,2, ...,100], where k is the number of

nearest neighbors.

Figure 5a shows test MAUC results as training data is increased. Note, we are unable to train

RANK-SVM with more than 25% of the data as the kernel matrix no longer fits in memory. The

ranking methods outperform KNN and SVR. Among the ranking methods, RANK-RC performs

slightly better than RANK-RND, and produces almost identical results to RANK-SVM in the cases

where RANK-SVM can be computed. Figures 5b and 5c compare training time and number of

support vectors, respectively, as training data is increased. We observe RANK-RC and RANK-RND

scale well and use fewer support vectors than SVR and RANK-SVM.
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Figure 5: Comparison of (a) test MAUC (see text) score, (b) training time in seconds, and (c) number of support
vectors, for the Heritage Health Network problem as percent of data used for training is increased from 5% to 75%.
In our experiment setup, we were unable to train RANK-SVM with more than 25% of the data, due to the large size of
the dataset.
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6. Conclusion

Many practical data mining problems, such as patient hospitalization, fraud detection, or cus-

tomer churn share a common characteristic: the cases we are most interested in are in the minority

or rare class. Standard algorithms are unable to learn rare class concepts well, since rare class

examples are under represented in the dataset sample. In addition, with growing amounts of data,

we continually face larger and larger datasets. Recently, Tayal et al. (2013) propose a solution to

address challenges associated with large-scale rare class learning called RankRC. Like RankSVM,

RankRC is a kernel method that minimizes ranking loss, while learning a regularized optimal hy-

pothesis function. Minimizing ranking loss corresponds to maximizing the AUC for a biclass

problem, which is more suitable for rare class datasets than a classification loss. In addition,

RankRC exploits class imbalance to achieve computational efficiency by enforcing a rare class

hypothesis representation.

In this paper, we analyze the solution of RankRC and compare it to the solution of RankSVM,

which uses the complete set of training data for the hypothesis representation. More generally,

we consider an arbitrary loss minimization problem, and examine the effect of restricting the

hypothesis to any subset of kernel functions (R-subset representation). We show that restricting

the hypothesis to a R-subset representation is equivalent to using a projected feature map while

solving the unrestricted problem. We use this result to conduct a stability analysis of the R-

subset hypothesis for RankSVM. The resulting bound is proportional to
√

p+ + p− where, p+ is the

percentage of points in the positive (rare) class and not inR and p− is the percentage of the points

in the negative (majority) class but not in R. Therefore, for a fixed cardinality |R|, this bound is

minimized by including as many rare class points in theR-subset representation as possible. This

result provides further theoretical justification for the RankRC algorithm proposed in Tayal et al.

(2013).

In addition, we show that using a R-subset representation is equivalent to solving the original

regularized loss minimization problem with a Nyström approximation of the kernel matrix. The

Nyström approximation is formed using columns indexed by the setR. This implies that RankRC

can be considered as a special Nyström approximation method for RankSVM, with columns se-

lected from the rare class only. Another implication is that we can obtain stability bounds for the

R-subset representation using a kernel perturbation approach. However, bounds obtained using

the kernel perturbation approach for a Nyström approximation can be arbitrary large. In contrast,
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the analysis using the projected feature map approach leads to more stable and tighter bounds.

We illustrate this behavior computationally, by comparing bounds obtained for the RankSVM R-

subset classifier using the two different approaches.

Although our motivation has been to analyze RankRC, we note that the results we obtain on

the equivalency of using a R-subset classifier, a projected feature map, and a Nyström kernel

approximation are quite general. These relationships can be used to analyze and devise algorithms

for other approximate kernel problems as well.

Finally, in this paper we also extend the biclass RankRC problem to a ranking problem with

more than two levels. Our motivating example is based on a competition problem proposed by

the Heritage Health Provide Network to predict number of days a member will be hospitalized in

the following year. Since the training data contains almost 150 000 samples, the kernel RankSVM

problem is too large to solve on standard machines. However, since the outcome distribution is

highly skewed, we are able to take advantage of the rare class representation to efficiently solve

the problem, with no apparent degradation in performance.
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